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ANALYSIS OF A CONGESTION MODEL IN A WIRELESS
ACCESS NETWORK WITH ONE BOTTLENECK ROUTER AND N
TCP FLOWS

Abstract. The paper analyses a model that describes a wireless access
network with one bottleneck router and n > 2 TCP flows described by a nonlinear
dynamical system. The equilibrium point is determined for the general case. For
the particular case n = 2 the periodic solutions are examined, when the round trip
time is considered as bifurcation parameter. The conditions for the local
asymptotic stability of the equilibrium point are given. In the last part, using
Maple and Matlab, the numerical example verifies the theoretical results and
some conclusions and future directions are shown.
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1. Introduction

In the recent times, the wireless access network has paid great attention, because
it is applied in different fields, especially to the Internet. The congestion control in
wireless access network is important in the success of the wireless network
technology [12]. According to [3], congestion control is an algorithm which
allocates available resources to competing sources efficiently in order to avoid
congestion collapse. The TCP congestion control algorithm has a role in avoiding
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network flooding. Nowadays, TCP approximates the best capacity of the network
by increasing/decreasing congestion window [5].

Therefore, there is a great motivation for many authors to study the
congestion control algorithm. Also, the heterogeneous delays are taken into account
in a wireless access network. In [3], the communication time delay is a bifurcating
parameter and the behavior of the system is investigated. In [2]-[12], the local
stability of the equilibrium point is studied in different congestion control models.
Also, the Hopf bifurcation is examined when there is a single link and a single
communication delay.

Based on the above papers, we conduct a study to find out the consequences
of time delay in a wired access network with one bottleneck router and n > 2 TCP
flows. The mathematical model is given by a nonlinear system with first order
differential equations with time delay. For the general case we study the existence
of the equilibrium point. When two different TCP flows pass through the router a
detailed analyze is provided. When the round trip time is taken as bifurcation
parameter, we apply the theory of differential equations with time delay to study
the occurrence of the Hopf bifurcation and the periodicity of the orbits.

The structure of the paper is as follows. The mathematical models of the
wired access network that takes into account the window size and the queue
length of the router are displayed in Section 2. In Section 3 we prove that the
mathematical model, with n > 2 TCP flows that pass through the router, has one
positive equilibrium point. For this one the characteristic equation is written. The
existence of Hopf bifurcation for the model with one bottleneck router and two
TCP flows is analyzed in Section 4. A numerical example that illustrates the
theoretical results can be found in Section 5. In the end, the conclusions are shown
in Section 6.

2. Mathematical models of a wired access network

The nonlinear differential equation that describes the window size is given
by [5]:

Wi (1) = i (L7 )K% - piw (t)j, i=1..n. o)
|

wi(t)

7
rate, zj stands for the round trip time at time t of flow i and pj(t) is the
probability of packet mark at time t.

There are two causes for the failure of a router in delivering packets: one can be
if their data loads are corrupted, or the router buffers are already full. If pg;(t)

denotes the drop probability, then (1) becomes:

where w; (t) is the TCP window size of flow i, x;(t) = represents the TCP
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Wi (t) = X (t -7 )(
The following differential equation describes the dynamics of the queue length
[12]:

Q(t)=F£§lXi(t—Ti)J—Ca c>0, 3)

i=1

where ¢ is the link capacity and F is the adjusted rate of the source based on
the congestion rate x(t) from the link node. The nonnegative function x(t) is a

decreasing one and differentiable.

Since pj (t) = kq(t), x;(t) = W'—(t) ([61), equation (2) becomes:

7j

SORPAC —Ti){l_qu(t) - 2K (DA -7 kP (D30 + pdiQ(t)}- @
X (0) ‘i

In [12], the mathematical model for wireless access networks, with one
bottleneck router and n >1 identical TCP flows that pass through the router, is

analyzed. Inthis case, for xj(t)=x(t), 7zj =7, pgi =Pg, i=L...n,n>1, (4)
becomes:
X(t) = x(t—r){l_qu(t) 1

77X (t) 2

K@ AL+ pg) +%kpd q(t)},
5)
q@) = F( %x(t —r)} —C
i=1

In this paper the wireless access network of only one bottleneck router and
n>2 different TCP flows passes though the router is considered. The
mathematical model is given by:

i (1) = i (t - r){—l‘qu(t) :
T

L O+ pai) + Skpgia® | i =L,
xj(t) 2 z

(6)
n
q@) = F[_lei (t- z’)} —-C,
1=
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where ¢>0 and F(x), and x>0 is a decreasing and nonnegative derivative
function.

3. Analysis of system (6)

The equilibrium point of system (6) is (xf,x;,...,xﬁl,, q*) and satisfies the
system:

1-kq

TZXi

n
F[ Xij—C=0 (8)
i=1

From (7) we have:

1 1 .
—Ekxiq(t)(1+ pi)+;kpiq:0, i=1..,n, (7)

q= 2 , i1=1..n 9)

K@+ @+ pj)r2xf —2ping)

and 0 <kq<1.
Hence (1+ pj )rzxi2 —2pjXj) and we get:

2pj

Hi: 72— i=1..,n (10)
L+ pj)x
We also consider:
Ho: pp>pj, i=2,..,n (11)

In what follows, we take z € [r1, ©) , where

2p
rp=—t (12)
x1(1+ p1)
With (7) and (9) we obtain:
(l+ pl)X12 -2px =71+ pi)xi2 -2pjXj, i=2,..n (13)

Let
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ai2 :;, i=1..n, ci2 = p12 - piz ,1=2,..n, (14)
1+ pj) @+ p) @+ pj)
and
Xj X — piaiz, i=1..,n. (15)
From (13) we have:
2122 - );iiz ~1=0,i=2,..,n. (16)
a;c;  afc
For i =2, from (16) we found that X1(«) given by:
X1(a) = a1¢p cosh(a), X1(a) =apcy sinh(a) (17)
is a solution of (16), for « e R.
For (17) and (15) we have:
X1 () = a1co cosh( ) + plalz,
X2 (ar) = apcy sinh( @) + pra3, (18)

Xj (@) =g \/cg COShZ(a)—CiZ + piaiz, i=3,..,n

We determine « € R so that, relations (18) satisfy the equation:

f(a)= F{ %Xi (a)J— c=0. (19)
i=1

n
If £(0)= F(in (a)J_C<O then there is ag > 0so that f(aq) =0.

=1

Proposition 1: The equilibrium point (xf,xz,..., x;, q*) of the system (6) is
given by:
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X1 = x1(ag), X2 = X2 (@0)s Xn = Xn (@)
x| 2 (20)
4 = 2 2 '
2(k(2+ 1+ pp)rx(a2)” - 2p12%(20))

Consider the transformation y; (t) = x; (t) — xi*, i=1..,n, Ya1 () =q(t) - q*.
Linearizing system (6) around the equilibrium point, we obtain:
Yi (t) = ajjyi (t) + aj n+1Yn+1(1),

| 0 21)
2 =D Lyi(t-o)
1=

where

ajj =Xi*[—1_2kc_1 _ka —kpiq ], i=1..n

ai,n+1=’<i*[‘_2k _ L +kﬂ], i=1..n

(22)
T 2 T
n
b= F{ Xj ]
i=1
The characteristic equation of (22) is:
D(4,7) = Pys1 (A7) + Qg (A )e ™ (23)
where
Pn1(4,7) = A4 -2a11)(A1 —az2)...(4 —anp),
Qn-1(4,7) =bag ny1(2—2ap2)...(A —apn) + (24)

+bag ni1(4-a11)(4 —agz)...( —app) +...+
+ban;ns1(d—a11).-(A-apn_g,n —1).

n *
and F’[in j:b.
i=1

10
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The coefficients aj;,aj 1 and b depend on the time delay 7 .

For the analysis with n =2 we apply the geometric criterion of Kuang ([1]).
4. Hopf bifurcation analysis of system (6) for n=2

For the case n =2, system (6) is given by:

X (1) = xq (t —T)[l_qu(t) —Ek(l+ p1)x1(t)a(t) LS P1Q(t)]
tox () 2 T

Zxo) 2

Ko (1) = Xt - r)llg A _Zka+ p)xa )+ pzq(t)} (25)
) =xqt—-7z)+xo(t-7)—c

with P1, P2 € [01], py#p2.

Let (xf x;,q*) the equilibrium point of system (25) given by (20), for i =1,2.
We use the transformation

() =X 1) X1, y2(0) =x2()-x2, ya® =a®)-q"
to linearize system (25) around (xf , xz,q*)and obtain:
y1(t) =a11y1(t) + a13y3(t),

y2(t) = azya(t) +azzya(t), (26)
ya(t) =by(t—7)+b yo(t—7),

where

« —1+kg 1 N
a1 =X = —-—k@+p1)g |,
2 f 2
T Xl
* k 1 * k
q3=X|——F— KL+ p)X +—p1 |,
A
T X]_
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* 1_k " 1 *
ay, = 2[_ 2( f])z _Ek(l+ pz)q }
77X

2
- k 1 « k
Ay = X, _ﬁ_ak(]ﬂL P,)X, +—P, |,
T (Xz) 4

b=F'(x; +X,).
The characteristic equation associated to (26) is:
D(A,7) =23 — (a11 +ap) 2% +a11a202 — ((aq3 + 23) 4 — a133; — apjagg)e 7 =0 (27)

We can notice that the coefficients aj; app depend on 7. We rewrite the

characteristic equation D(A4,7) =0as:

D(4,7) = P3(1,7) +Q (4, 7)e 4 =0 (28)

where

P3(A,7) = 2> —(ag1 +a22) A% +agjapn 2, (29)
Q1(4,7) =b(a13 +ap3)A +b(aszags +aj1az3).

Proposition 2:([1]) If = > 71, then the following statement hold:

(i) P3(0,7) +Q1(0,7) #0and Ps(imw,7) + Q(im, ) = 0 for any real positive w;
i) 1

(1) fim sup{ P (L 7)
(iii) For eachz, the function H(w,7)=|Ps(ie, r)|2 —|Q1 (i, r)|2 has at most a
finite number of real zeros and if there is a positive root w(r) of H(w,z) =0 then

it is continuous and differentiable inz .
Proof: A straightforward calculation leads to:

P3(0,7) + Q1(0,7) =b(ajzas3 +ajjazz # 0, 7 €[r1, )

1|4 > 0, Re(2) = o} <1

and

Ps(im,7) + Qq(io, 7) = (11 +app)o” +b(aggaps +a11azs) +
+ i(—a)3 + (a22a11 - b(a13 - a23)))a) * 0,

12
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then (i) holds.

Using
fim QA7) _ lim |_ b(arz +ap3)4 +b(agzaz + a11a23)| o
‘/1‘—)00 Pg(ﬂ, T) ‘/1‘_)00‘ /13 _ (311 + azz)lz n a]_]_azz/l ‘

we obtain (ii). For each ¢, the following form of function H(w, )
H(w,7) = 0® + ((a11 +a22)? — 2a1180) 0" + (aflafz ~(a13 +ap3)?)w? -
—~b(ag3az; +a11ap3)*

leads to (iii). O

As A =iwVerifies (28) then we have:

3 3
o (agq +app)(a13 +ap3) — (wagjagy — w”)(a13app +a11a23)

sin(wr) = > 2 >
b(w” (a3+a22)” +(ag3a2 +a11a23)") . (30)
cos(wr) = o(@ag189) - °)(@q3 +ag3) - ©° (aq1 +8p2)(@13822 + A11ap3)
b(e? (a13+822)? + (aq3822 +211223)%)
Therefore,

o® + (a121 + a§2)w4 + (aflagz —b? (a3 + a23)2)a)2 ~b? (ag3a0 + a11a23)2 =0. (31)

We use the notation z = »? and (31) becomes:

z3+r122+r22+r3:0,

where
2 2 2.2 2 2 2 2
n= 811 + 322, I = 811322 -b (6113 + 323) , I3 = -b (61138.22 + 61116123) .

Due to the fact that r3 <0, the equation h(z) =0 has at the least one positive root,
where

DOI: 10.24818/18423264/52.3.18.01
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h(z) = 23+ r122 +rpz+r3.
Now, we use the following maps:

O(r)+2nx

Sp(r)=7- o)

, heN,

where for z e [r1, o) and O(z) e (0, 2r) are define by:

— o((an1292 — *)(a13822 + a112p3) + > (agq +agp)(ar3 +2z3)
»? (a13+823)% + (3202 +211823)° ,
—w® ((wag1ag — ®?)(a13 +a3) — (811 +ag)(ag3a22 +a11ag3)w> _
ba? (g3, a23) +b(aggag, +aj1az3)?

sin 8(z) =

cos d(r) =

Equation (28) admits the roots 4 = +w(zq)i, g € (0, 71) if and only if Sg(zg) =0,
for some neN. From [1], this pair of roots crosses the imaginary axis if
S(zg) > 0 and crosses the imaginary axis from right to left if 5(zg) <0, where:

5(70) = ggn{w‘ }z ggn{m } .
dr A=iao(zy) T=T,

T
In what follows we have analyzed the stability of the system (25), when 7 = %0 by

discussing the stability of the following auxiliary system:

y1(t) =c12y1(t) +ca3ys(t)
y2(t) =coay21(t) +C213Y3(t) (32)
y3(t) =dyp(t—r)+dyy(t-r),

where r >0and
ci1=anl,_%, ci3=a3|, _7,
2 2
Co2 =app|,_%0.,C23=Cp3| _To -
2 2

d :b\T:%o.

14
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Then the characteristic equation of (27) is given by:
23— (11 +¢22)2% +011C024 — d((C13 +Cp3)A —C13C0 —C1ac3)e A =0.  (33)

when r =0, (33) becomes:

2+ a1/12 +asl+ag =0. (34)
where
ap =—(C11 +C22), @z =112 —d(C13 +C23), @3 =d(C13C22 +C11C23)
Using Routh-Hurwitz stability criterion for (34), it follows:

Proposition 3: If the condition a >0, a3 >0, aja, >agis satisfied, the
equilibrium (0, 0, 0) of system (32) is locally asymptotically stable.

Consider A = tioy where wr, >0,as2 simple root for equation (33). This lead to:
2
fo (35)
dag cos(rey. ) +dagsin(reo,_ )= —03 + ar o

0 Iy Iy Iy

day cos(rwro )— daga)rO sin( ro, )=a1@
0

From (35) we obtain:

2 3
a4a)ro (a)ro - 8.2) - alaga;ro

sin(ey 1) = ,
0 2, .2 2
d(ay +a;3 oy )
2 3
ajago, —ago, (a)r —apwr )
— 0 0 0
cos(a)IrO r=- T 5 3
d(a4 +aj3 a)fo )
There four:
Spw? +S108 +Sp0* +S3w? +S,=0. (36)
r0 rO r0 rO
where

DOI: 10.24818/18423264/52.3.18.01
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2
SO=a3,

2
$1 = (ag —agag)” - 2ag(apaz + agay),

Sp = (agag +aga)” ~ 2ap2y (a4 — ayag) 263‘3 :
S3= a%aﬁ - 2da§a§,

34 = —daj:’.

Equation (36) can be rewritten as:

8 6 4 2 _
a)ro + Rla)ro + Rza)ro + R3a)r0 + R4 =0 (37)
where
R S
Rlzi,Rzz—z,Rgzi,R4=S—4.. (38)
So So So So

If we denote z = wrz

0

then (37), becomes:

2% + Ryz8 + Rpz? + Rgz + Ry = 0. (39)

Equation (37) has at the least one positive root, because lim hg(z) =, and

Z—>©0
R4 <0, where
ho(z)=z4+R123+R222+R3z+R4. (40)
Let zq be the positive root of the equation (40). Therefore:
2 2,2
qa0- — a3 (o —a)
r(s) =1 arccos h h' +257|, (41)

o, d(a32+a32a)r20)
where s=012,... and o _ =./7g .
0

Now, we consider p(r)= u(r)+iw(r),a root of (33) with u(rg)=0,
wr (1p) = @, - Differentiating equation (33) with respect to r , we get:

16
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da(r) ~2M(Cy-Cy) 42)
ar ¢ -r —Ar’
1+Coe +(C3/1+C4)re
where
C1 =322 — (11 +C22) A +C11C27,
C2 =—d(c13 +c23),
C3 =d(c13 +¢23)4,
Cq4 =—d(c13€22 +€11C23)-
For A(rp) =iay, from (42), we get:
-1
Re( d/;(r)) _AA2—-B1By (43)
.

Y
A=A(r,) Ay +B;
where
- 2
Ay =2ar, (C11 +Cg2)sin( oy, 1p) + (2€11C22 — 3y ) cos(ey, To),

Ay =d(c13 +023)wrz0 ,

By = c11€22 sin( @, ),
B2 =d(c13c23 +C11C23) @, -

From the above discussion, the transversality condition holds:

-1
Re[Mj £0-
dr

ﬂ:l(ro)

Theorem 4: The equilibrium point of the linearized system (32) is locally

asymptotically stable whenr <rg. If rg(zg) > %0, then the equilibrium point of

the wired access network with one bottleneck router and two TCP flow described

by (25) is locally asymptotically stable when 7 = %0.

According to [2] we have:

DOI: 10.24818/18423264/52.3.18.01
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Proposition 5: If the function Sq(z) has positive zeros in (0,7), the equilibrium
point (xf,x;,q*) of system (25) is asymptotically stable for all 7 e (r1,7) and
becomes unstable for staying in some right neighborhood of z(. Therefore, system
(25) undergoes Hopf bifurcation when 7 < 7.

5. Numerical Simulation

Numerical simulations are done with Maple, Matlab and the following
parameters: c=5 p;=0.8, pp =02, k=0.001 rg =2.06. The equilibrium

point of system (25) is xf =2.33, xz = 2.6645, q* =55.615. From the above
findings, the equilibrium point (xf,x;,q*) is asymptotically stable when r < zg
(see Figure 1).

When ¢ takes the value 7 =2.06,(xf,x§,q*) loses its stability and a Hopf

bifurcation takes place (Figure 2).
We can conclude that the numerical example verifies the theoretical findings.

23
=1 —
SN 2651

1 0 0 0 0
tmet fime t

Figure 1: The orbits (t,xq(t)), (t,x2(t)), and (t,q(t)) when the round trip time
is 1.9
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Wy
} |
1 | = 'Ul ||“ L
fn‘l 2684 fmv
‘ 56 585

m . . . . . . . 268% . . . . . . " " . . . " " .
02 4 @ 0 W oW w6 ’ I 0 4 @ w0 W oW oW om 0 2 4 @ € W @ W W
fmet fimet fime t

Figure 2: The orbits (t,xq(t)), (t,x2(t)), and (t,q(t)) when the round trip time
is 2.06

6. Conclusion and future works

This paper deals with a congestion model in a wireless access network with one
bottleneck router and n>2TCP flows. When two different TCP flows pass
through the router, a nonlinear dynamical system with three differential equations
describes the model. Two equal time delays that stand for round trip times of
flows, are introduced.

The equilibrium point is determined and we provide sufficient conditions for its
stability by analyzing the characteristic equation associated to the linearized
system. The round trip time is considered as bifurcation parameter and when it
takes a critical value we proved the existence of the Hopf bifurcation. A family of
periodic orbits bifurcates from the equilibrium point. We used Maple and Matlab
for the numerical simulations to verify the theoretical things.

Due to the fact that there are perturbations in our future work we will take into
consideration the stochastic model with distributed time delay.
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